Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Using nearly simultaneous radio, near-infrared, optical, and ultraviolet (UV) data collected since 2009, we constructed 106 spectral energy distributions (SEDs) of the blazar OJ 287. These SEDs are well fitted by a log-parabolic model. By classifying the data into “flare” and “quiescent” segments, we find that the median flux at the peak frequency of the SEDs during the flare segments is 0.37 ± 0.22 dex higher compared to the quiescent segments, while no significant differences are observed in the median values of the curvature parameterbor the peak frequency . A significant bluer-when-brighter trend is confirmed through the relation between theVmagnitude andB − Vcolor index, with this trend being stronger in the flare segments. Additionally, a significant anticorrelation is detected between andb, with a slope of 5.79 in the relation between 1/band , closer to the prediction from a statistical acceleration model than a stochastic acceleration interpretation, though a notable discrepancy persists. This discrepancy indicates that additional factors—such as deviations from idealized conditions or radiative contributions, such as the thermal emission from the accretion disk in the optical–UV range during quiescent states—may play a role in producing the observed steeper slope. Within the framework of the statistical acceleration mechanism, the lack of correlation between the change in the peak intensity and the change in the peak frequency suggests that the change in the electron energy distribution is unlikely to be responsible for the time-dependent SED changes. Instead, changes in Doppler boosting or magnetic fields may have a greater influence.more » « less
-
Abstract Due to its peculiar and highly variable nature, the blazar 3C 454.3 has been extensively monitored by the WEBT team. Here, we present for the first time these long-term optical flux and color variability results using data acquired inB,V,R, andIbands over a time span of about two decades. We include data from WEBT collaborators and public archives such as SMARTS, Steward Observatory, and Zwicky Transient Facility. The data are binned and segmented to study the source over this long term when more regular sampling was available. During our study, the long-term spectral variability reveals a redder-when-brighter trend, which, however, stabilizes at a particular brightness cutoff of ∼14.5 mag in theIband, after which it saturates and evolves into a complex state. This trend indicates increasing dominance of jet emission over accretion disk (AD) emission until jet emission completely dominates. Plots of the variation in spectral index (followingFν∝ν−α) reveal a bimodal distribution using a one-day binning. These correlate with two extreme phases of 3C 454.3, an outburst or high-flux state and a quiescent or low-flux state, which are respectively jet- and AD-dominated. We have also conducted intraday variability studies of nine light curves and found that six of them are variable. Discrete correlation function analysis between different pairs of optical wave bands peaks at zero lags, indicating cospatial emission in different optical bands.more » « lessFree, publicly-accessible full text available December 9, 2025
An official website of the United States government
